Explicit subconvexity for GL <sub>2</sub>

نویسندگان

چکیده

We make the subconvex exponent for GL2 cuspidal representation in work of Michel & Venkatesh explicit. The result depends on an effective dependence “fixed” our former bounds twists by Hecke characters, which turn L4-norm test function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subconvexity for Twisted L-functions on Gl(3)

Let q be a large prime and χ the quadratic character modulo q. Let φ be a self-dual cuspidal Hecke eigenform for SL(3,Z), and f a Hecke-Maaß cusp form for Γ0(q) ⊆ SL2(Z). We consider the twisted L-functions L(s, φ × f × χ) and L(s, φ × χ) on GL(3) × GL(2) and GL(3) with conductors q6 and q3, respectively. We prove the subconvexity bounds L(1/2, φ× f × χ) φ,f,ε q, L(1/2 + it, φ× χ) φ,t,ε q for a...

متن کامل

Towards an explicit eigencurve for GL(3)

Starting with a numerically non-critical (at p) Hecke eigenclass f in the homology of a congruence subgroup Γ of SL3(Z) (where p divides the level of Γ) with classical coefficients, we first show how to compute to any desired degree of accuracy a lift of f to a Hecke eigenclass F with coefficients in a module of p-adic distributions. Then we show how to find to any desired degree of accuracy th...

متن کامل

AN EXPLICIT CONDUCTOR FORMULA FOR GL(n)×GL(1) AND FUNCTORIAL DEPTH PRESERVATION

We prove an explicit formula for the conductor of an irreducible, admissible representation of GL(n, F ) twisted by a character of F× where the field F is local and non-archimedean. The components of our formula are analysed, both explicitly and on average, for application to the analytic study of automorphic forms on GL(n). We also demonstrate that “functoriality preserves depth” for such Rank...

متن کامل

PLANCHEREL MEASURE FOR GL(n): EXPLICIT FORMULAS AND BERNSTEIN DECOMPOSITION

Let F be a nonarchimedean local field, let GL(n) = GL(n, F ) and let ν denote Plancherel measure for GL(n). Let Ω be a component in the Bernstein variety Ω(GL(n)). Then Ω yields its fundamental invariants: the cardinality q of the residue field of F , the sizes m1, . . . ,mt, exponents e1, . . . , et, torsion numbers r1, . . . , rt, formal degrees d1, . . . , dt and the Artin conductors f11, . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematika

سال: 2022

ISSN: ['2041-7942', '0025-5793']

DOI: https://doi.org/10.1112/mtk.12147